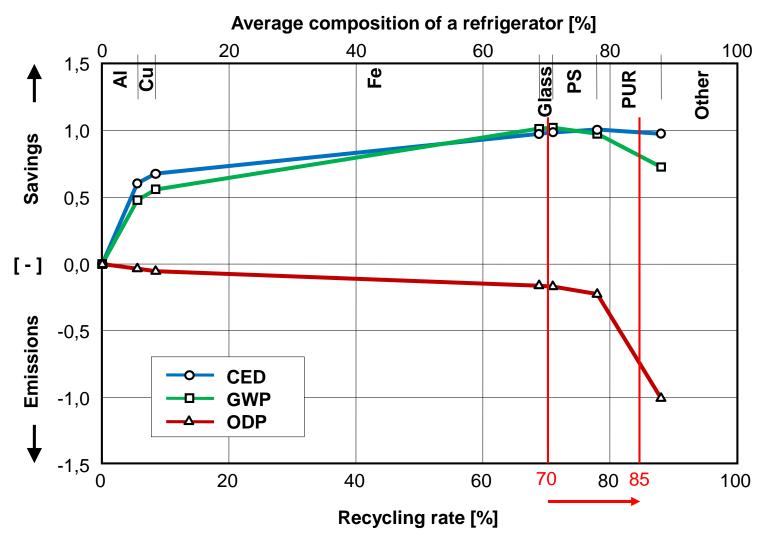
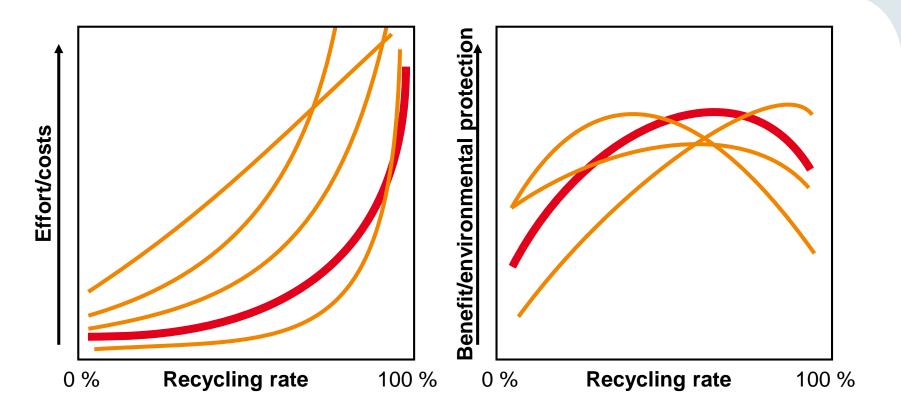

How to find optimized recycling rates and more to establish a Circular Ecocomy

Helmut Rechberger Institute for Water Quality, Resource and Waste Management Technische Universität Wien

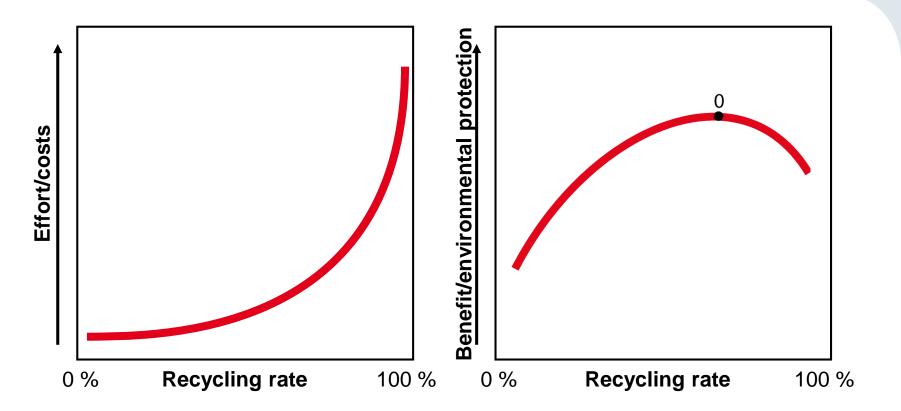


Costs and benefits of recycling


Real quantitative example

CED: Cumulative energy demand GWP: Global warming potential ODP: Ozone depletion potential

Source: Laner, D., Rechberger, H., Treatment of cooling appliances: Interrelations between environmental protection, resource conservation, and recovery rates. Resources, Conservation and Recycling, 2007, Vol 52, No. 1, 136-155.

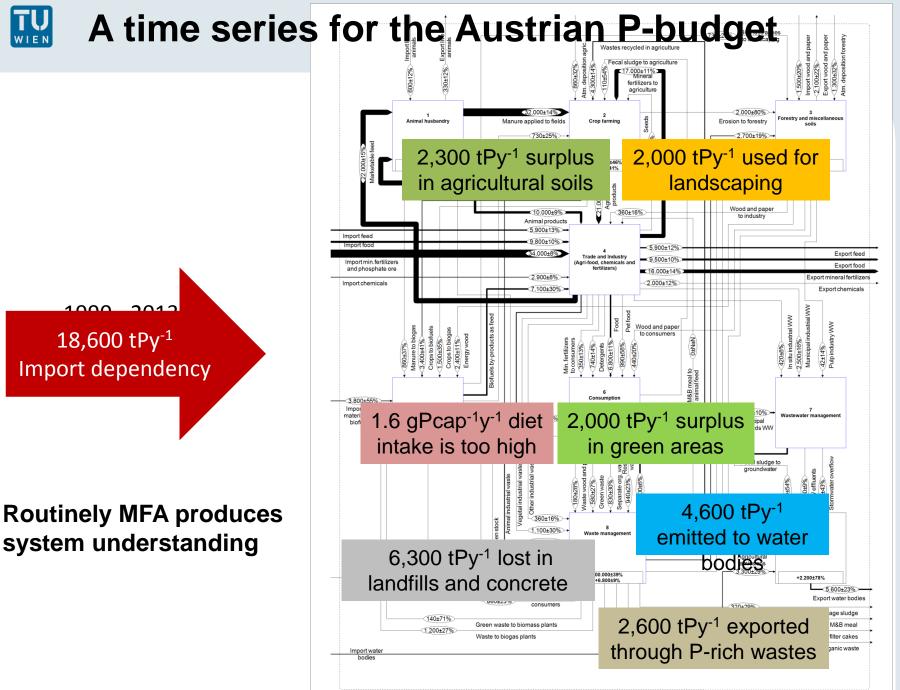

There are many such curves

These curves are a function of:

- the type of waste
- the type of recycling technology
- the price of primary resource(s)
- the type of the primary production process

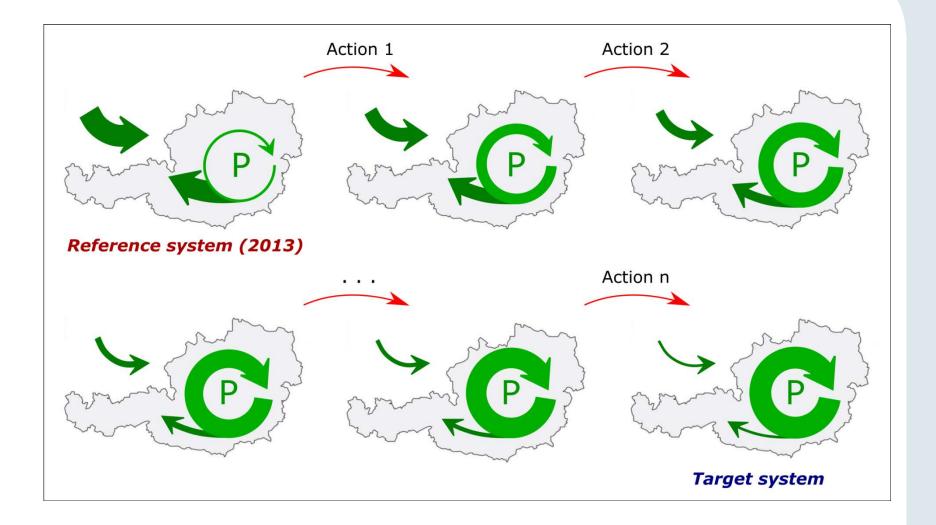
The curve is a moving target

These curves are a function of:


- the type of waste
- the type of recycling technology
- the price of primary resource(s)
- the type of the primary production process

Conclusions on the recycling rate

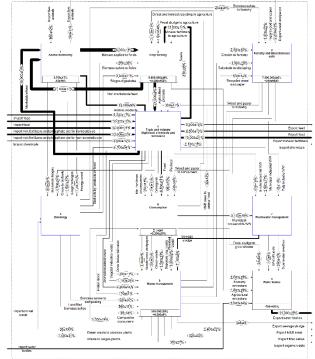
- > A higher recycling rate is not per se better.
- To find the optimal recycling rate requires profound understanding of the system.


Recycling is not a goal – it is a means to achieve a goal.

There is more than recycling and recycling rates: Phosphorus as an example how we can derive sound decisions for optimization

Austrian phosphorus budget. Year 2011

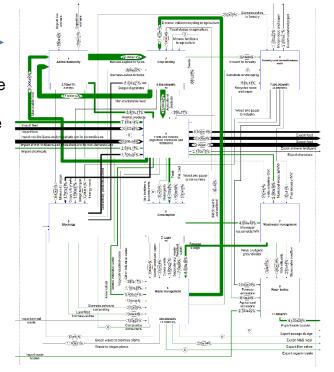
How can the system be optimized?



Identified fields of action

Field of action	Scope for reduction of Import dependency	Scope for reduction of Mineral fertilizers consumption	Scope for reduction of Emissions to water bodies	Uncertainty	Main data gaps	Main challenges
P recycling from meat and bone meal	16%	23%	-	Moderate	P concentration	Legal framework and market uncertainties for recovered fertilizers
P recycling from sewage sludge	23%	32%	-	Moderate	Technological performance and product quality	Legal framework and market uncertainties for recovered fertilizers
P recycling from compost	11%	15%	-	High	Current use shares; P concentration	Regulation/coordination of sales in large number of plants
P recycling from digestates	-	-	-	Low	Feedstock amounts and composition	er and heterogeneity of plants
P recycling from biomass ashes	2%	3%	-	Moderate	Feedstock amounts and composition	omic incentives that offset ogistical costs
P recycling from manure	-	-	-	460	current of	^c agricultural advice services
Municipal and industrial organic waste manamgent	2%	401	voram	ethe	rates	 separate collection; increase of logistical efforts
Balanced and healthy diet	15 actio	ons to	o recv	cling	Lacoversity of system feedbacks	Resistance to change; Opposition of meat producers
Use efficiency in crop farming	15 45	N	101003	Moderate	Livestock excretion factors; P content in crops	Enhancement of agricultural advice services
Optim. of P content in feedstuff		-	-	High	Current state of optimization; complex feedbacks	Enhancement of agricultural advice services
Reduction of P in detergents	4%	-	2%	Low	-	-
Reduction of P in other industrial uses	-	-	-	High	Materials flows in industrial applications	Substitutability of P
Reduction of accumulation in green areas	11%	15%	-	High	Home composting; sales of compost to privates	Resistance to change; Coordination of large number of people
Reduction of point discharges	-	-	10%	Low	Loads and perform. of industrial treatment plants	Higher Fe levels in SS pose a problem to P recovery
Reduction of erosion from agricultural soils	12%	17%	13%	High	Retention processes and transport of legacy P	Implementation at large scale; identification of hotspots
Indicator value in 2013	18,600 tР у ⁻¹ 2.2 kgP сар ⁻¹ у ⁻¹	13,200 tP y ⁻¹ 1.6 kgP cap ⁻¹ y ⁻¹	4,600 tP y ⁻¹ 0.54 kgP cap ⁻¹ y ⁻¹			

P Austria 2013



Import dependency Consumtion of mineral fertilizer Emissions to water bodies

15 actions

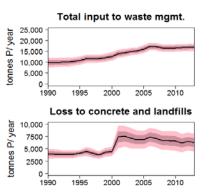
P-recovery from meat & bone P-recovery from sewage sludge Optimized compost use Separate collection of biowaste Healthy diet Optimized harvesting P in fodder Detergents P surplus on grassland Point sources Erosion

Optimized (target) system

2,2 kgP/cap.yr 1,6 kgP/cap.yr 0,54 kgP/cap.yr

VS

VS


VS

0,23 kgP/cap.yr (- 90%) 0,0 kgP/cap.yr (- 100%) 0,39 kgP/cap.yr (- 28%)

Conclusions beyond recycling rates

The advantages of MFA (a relevant IE tool)

- Generates system understanding
- Serves to control data
- Provides hints where system has to be improved
- Supports decision making

Can be well combined with EFA, LCA, economic assessment

Requirements

From academic to administration: these tools have to be routinely applied and used for informed decision making

Routinely applied by

EPAs

Ministries for the environment

National statistical offices and Eurostat

Resource agencies

....

Optimizing the industrial metabolism is more than just increasing recycling rates.

It is about understanding the metabolism (tools are available) and then identifying fields of action for optimization.

Reference system (2013)

Target system