Global warming, energy and circularity – the top-down approach

Prof. dr. Arnold Tukker Leiden University – CML and TNO, Netherlands

ISIE Meeting Science, the Environment and the Circular Economy, Monday 25 April 2016, Brussels

Universiteit Leiden The Netherlands

Introduction

- Some top-down tools developed by the IE community
- Some results of analyses
- Some policy implications

Accounting for resource use & impacts

Some top-down tools of the IE community on measuring circularity

- Economy wide material flow analysis
 - Country level
 - Circularity -> reductions of material inputs visible
- Environmentally extended input-output analysis (EE IO)
 - Sector level (full countries or international)
 - Can identify resource use at sector level

		Indus	tries		Y *,A	Υ _{*,B}	Y _{*,C}	Y _{*,D}	q
	Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	$\mathbf{Y}_{\mathbf{A},\mathbf{A}}$	Y _{A,B}	Y _{A,C}	$\mathbf{Y}_{\mathrm{A},\mathrm{D}}$	q _A
ucts	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	Y _{B,A}	Y _{B,B}	Y _{B,C}	Y _{B,D}	\mathbf{q}_{D}
Prod	Z _{C,A}	Z _{C,B}	Z _{c,c}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
	Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	Y _{D,A}	Y _{D,B}	Y _{D,C}	Y _{D,D}	q _D
w	W _A	W _B	W _c	W _D					
g	g _A	g _B	g _c	g _D					
-	Capital _A	C _B	Cc	C _D					
۳ ۳	Labor _A	L _B	L _C	L _D					
	NAMEA _A	NAMEA _B	NAMEA _C	NAMEA _D					
1 te	Agric _A	Agric _B	Agric _c	Agric _D					
E E	Energy _A	Energy _B	Energy _c	Energy _D					
l si	Metal _A	Metal _B	Metal _c	Metal _D					
—	Mineral _A	Mineral _B	Mineral _c	Mineral _D					
	Land _A	Land _B	Land _c	Land _D					

Environmentally extended input output analysis

- Some 4 global databases available
- EXIOBASE by consortium of undersigned
 - Includes physical global flows
 - 43 countries, 163 sectors, 80 resources, 40 emissions

EE IO can analyse consumption drivers and relations (climate, materials, etc.)

- Relates production to consumption
 - Example: 5 Euro coffee at Starbucks
 - 3 Euro for Starbucks = Restaurant
 - 1 Euro for roaster = Food industry
 - 0.5 Euro for transport = Transport
 - 0.25 Euro for farmer = Agriculture
 - 0.25 Euro for fertiliser, etc.
 - Impacts per sector/country per Euro known
 - Multiply -> you see how impacts of production relate to consumption
 - In essence you re-distribute global territorial emissions to consumption

	Industries					Y *,A	Y *,B	Y *,c	$\mathbf{Y}_{*,D}$	q
		Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	Y _{A,A}	Y _{A,B}	Y _{A,C}	Y _{A,D}	q _A
	ucts	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	Y _{B,A}	Y _{B,B}	Y _{B,C}	Y _{B,D}	q _D
	Prod	Z _{C,A}	Z _{C,B}	Z _{c,c}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
		Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	Y _{D,A}	Y _{D,B}	Y _{D,C}	Y _{D,D}	q _D
	w	W _A	W _B	W _c	W _D					
	g	g _A	g _B	gc	g _D					
ľ	КГ	Capital _A	C _B	C _C	C _D					
	õ	Labor _A	L _B	L _C	L _D					
		NAMEA _A	NAMEA _B	NAMEA _C	NAMEA _D					
Environ Ext	ť	Agric _A	Agric _B	Agric _c	Agric _D					
	Sn Ey	Energy _A	Energy _B	Energy _c	Energy _D					
	nvire	Metal _A	Metal _B	Metal _c	Metal _D					
	ű	Mineral _A	Mineral _B	Mineral _c	Mineral _D					
		Land _A	Land _B	Land _c	Land _D					

Illustrative analysis (2007): production versus consumption

- European production versus consumption
 - Carbon: 16.1 % versus 20.2%
 - Water: 7% versus 12.7%
 - Land: 5% versus 12.6%
 - Materials: 12.9% versus 18.7%
- Fraction of EU consumption pressures abroad
 - Carbon: 20%
 - Water: 45%
 - Land: 60%
 - Materials: 31%

Source: TNO, NTNU, WU, UL-CML, CREEA project

Illustrative analysis: production versus consumption

- 2 of 9 Gton of Chinese CO2 embodied US and EU imports

Source: TNO, NTNU, WU, UL-CML, CREEA project

Illustrative analysis: embodied imports

- Italy, 2007
- At detailed product level

Source: TNO, NTNU, WU, UL-CML, CREEA project

Illustrative analysis: cleaning up energy is key

- Carbon per Euro final demand versus expenditure
- Non OECD, 2007
- Top areas
 - Steam and hot water supply
 - Electricity by coal
 - Electricity by oil
 - Rubber and plastics products
 - Air transport

Source: TNO, NTNU, WU, UL-CML, CREEA project

Illustrative analysis: climate scenarios related to resource-efficiency

Assumptions

- Exogenous GDP growth
- Historical resource-efficiency gains per sector (same output, less input)
- Various scenarios for low-carbor technologies

- Results

- Technical fix is not sufficient
- Change in consumption had too little impact
- Reduction of consumption works

Source: CML research, CECILIA 2050

Table 2 The eight product groups whose production is responsible for about 20% of CO_2 emissions in the EU in TS

Product groups	Contribution to consumption-based CO_2 emissions (% of total EU consumption-based CO_2 emission)
Ceramic goods	0.4
Electricity by coal	0.6
Sea and coastal water transportation services	5.1
Other petroleum products	0.4
Bricks, tiles and construction products, in baked clay	0.5
Basic iron and steel and ferro-alloys	7.4
Cement, lime and plaster	2.8
Air transport services	5.3

Figure 3 Territorial CO₂ emissions in the different scenarios in the four regions compared with our 2DS scenario where GDP growth is assumed to be reduced

Illustrative analysis: resource implications of climate scenarios

- Assumptions

- Exogenous assumptions
- IEA Blue map
- Energy & transport with LCA; rest with EE IO

- Results

- Demand rises with similar level in ALL scenarios....
-except Nd and Dy...
- For In cumulative demand 10 times reserves

Some policy implications

- Circularity is a global issue
 - Europe depends on resources from abroad all of them
 - A circular Europe will not change production abroad, at best reduce some imports
- Climate and resources form a nexus
 - Resource efficiency can help realise climate goals.....
 -but not in full
 - Climate goals need resources for new technologies.....
 -but the challenge is not very different as from Business as usual
- Recycling processes and energy form a nexus
 - Recycling usually needs energy.....
 - ...so in some cases only useful if we have clean energy available
- A carbon-neutral energy system is crucial...
- Insight in the physical economy is crucial !!

Thanks for your attention!

Possible analyses: fraction unused resource input per sector

- U + R is inputs
- V is useful output
- G and W are waste

