Global economy's circularity:

Current state and future options

Willi Haas

Fridolin Krausmann, Dominik Wiedenhofer Industrial Ecology: Science, the Environment and the Circular Economy

Introduction: Promising cases at industry and national scale

Remanufactured part at company level

Appliance recycling laws

Symbiosis Programme recovered port facilites

- What is the potential?
- What are the limitations?

 How circular is the economy (system level)?

Defining the Circular Economy

A Circular Economy (CE) is based on two resource loops (GEO5 2012):

difficult to assess these criteria – our results rather show the **upper range**

EU27 Material Flows in Gt in 2005

Circular economy indicators in the EU and for the world

Materials processed:

EU27 has slightly **higher degree of circularity** due to much higher recycling shares

but also higher rates of per capita **material inputs and waste output**

socialecologyvienna (ff) ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Crucial points towards a circular economy

Crucial points towards a circular economy

KLAGENEURT I WIEN GRA

Potential degree of circularity: 38%

Biomass*) and recycled materials**) as share of materials processed

*) Assumption: (1) biomass produced in a renewable way (soil, water, carbon); (2) All biomass waste flows re-enter ecological cycles

**) Assumption: no down-cycling

Crucial points towards a circular economy

Conclusions: Potentials, limits and policies

 Closing loops:

What-if analysis	Raw materials	DPO	Recycling / materials
reference 2005	6,7	5,0	13%
20% higher recycling rate	6,5	4,8	15%
50% Decarbonisation	5,7	4,1	14%
50% Addition to stocks	5,1	5,0	16%
combined	4,2	4,5	22%
	-38%	-20%	

Requires modelling of linkages between flows and stocks and flows

- Increasing loop closing (within economy) from 13 to 22% and reducing raw material input by 38% is a big challenge.
- This needs a two-dimensional policy integration for tackling the resource nexus

- Even high circularity needs outputs to stay within planetary boundaries
- Growing stocks determine high flow levels today and in future
- Shrinking flows and stabilizing stocks remains a major policy challenge

Thank you for your attention

